University of Minnesota
Institute for Engineering in Medicine

Unit's home page.



01/27/17 - Art Erdman Awarded ASME Savio L-Y Woo Translational Biomechanics Medal

Dr. Arthur G. Erdman, Professor of Mechanical Engineering, Director of the IEM-affiliated Medical Devices Center and IEM Executive Committee Member, was selected as the recipient of the 2017 ASME Savio L-Y Woo Translational Biomechanics Medal, for "translating meritorious bioengineering science to clinical practice through research, education, professional development, and with service to the bioengineering community." The medal was established in 2015 and can be used to recognize individuals in ASME's Bioengineering Division for "basic bioengineering science that translates into a medical device or equipment, contributes to new approaches of disease treatment, establishes new injury treatment modalities, etc." Dr. Erdman, who says that he is honored by this distinction, will be presented with the medal at the 2017 Summer Biomechanics, Bioengineering and Biotransport Conference, to be held June 21st to 24th, in Tucson, Arizona.

ASME Savio L-Y Woo Translational Biomechanics Medal

01/27/17 - Steven Koester Named 2017 IEEE Fellow

Dr. Steven J. Koester, Professor of Electrical and Computer Engineering (ECE), and IEM Member, has been named as a 2017 IEEE Fellow "for contributions to group-IV electronic and photonic devices." Dr. Koester's current research is focused on novel electronic, photonic and sensing device concepts with an emphasis on graphene and other two-dimensional materials. His group has developed numerous biosensor concepts including wireless radiation dosimeters for in vivo cancer therapy and a graphene-based chemical sensor for use in the diabetes treatment. Dr. Koester has authored or co-authored over 200 technical publications, book chapters and conference presentations, and holds 66 United States patents. He is an associate editor for IEEE Electron Device Letters and is also an associate director for the SRC/DARPA-funded center for spintronic materials interfaces and novel architectures (C-SPIN). The grade of Fellow, the highest membership grade, is conferred by the IEEE Board of Directors on individuals with an outstanding record of accomplishments in an IEEE field of interest. Fewer than one-tenth of one percent of the total number of voting members are elevated as Fellows.

C-SPIN Associate Director Professor, Steve Koester Named IEEE Fellow

01/27/17 - Teresa Kimberley Awarded $1.5 Million NIH Grant to Pursue Treatment of Rare Movement Disorder

IEM Member Dr. Teresa J. Kimberley, Associate Professor in the Division of Physical Therapy and Rehabilitation Science, was awarded a $1.5 million NIH Grant to investigate the pathophysiology in dystonia, a rare movement disorder. This will build upon Dr. Kimberley's previous work, in which she led a team of IEM members to develop a novel method for measuring cortical excitability in deep or intrinsic muscles. That early work was supported by NIH, MnDRIVE and IEM. The new, NIH-funded project will combine non-invasive brain stimulation and neuroimaging to determine brain network function in people with different types of focal dystonia compared to that function in healthy people. "Dystonia is an enigmatic movement disorder, but I am optimistic that the innovative technology and techniques we are using will lead to a breakthrough in understanding this disorder and help lead to meaningful treatment development," says Dr. Kimberley.

01/27/17 - University Commits $2.5 Million to Greg Beilman & Colleagues for Development of Therapy to Treat Traumatic Blood Loss

IEM member Dr. Gregory J. Beilman, Professor of Surgery, is a part of a three-person research team at the Twin Cities and Duluth campuses of the University of Minnesota that is seeking to commercialize a drug therapy to treat victims of traumatic blood loss. As reported in Twin Cities Business, D-beta hydroxybutyrate and melatonin (BHB/M) therapy has been in development since 2005, and both on and off the commercialization track as economic factors fluctuated. Recently, however, the University's Center for Translational Medicine has given the team a $2.5 million grant to continue research on BHB/M therapy. With the renewed interest in the treatment, the team hopes to complete the preclinical work that will put the drug on track for clinical trial approval from the U.S. Food and Drug Administration.

U of M Renews Commercialization-Push for Sidetracked Blood-Loss Therapy

01/27/17 - Michael Walters Cited by Scientific American for Research Review Showing no Therapeutic Benefit to Curcumin

IEM Member Dr. Michael A. Walters, Research Associate Professor of Medicinal Chemistry and Director of the Lead and Probe Discovery Core of the Institute for Therapeutics Discovery and Development (ITDD), was cited by Scientific American for a review of thousands of research papers and over 120 clinical trials, showing no therapeutic benefit to curcumin. The molecule is part of the spice turmeric, which has been popularized in literature as having health benefits. "People accept what is in the literature as being correct and then build a hypothesis, even though it doesn't hold up," says Dr. Walters, who was the lead author of the review, published in the Journal of Medicinal Chemistry. Dr. Walters describes their findings on curcumin research as a "cautionary tale," and scientists hope that it will prevent others from pursuing what they believe would be futile efforts.

Deceptive Spice Extract Offers Cautionary Tale for Chemists

01/27/17 - Douglas Yee Discusses Potential Effectiveness of Immunotherapy in Eliminating Dormant Breast Cancer Cells

IEM Member Dr. Douglas Yee, Professor of Medicine and Pharmacology and Director of the Masonic Cancer Center, discussed the potential effectiveness of immunotherapy in eliminating dormant breast cancer cells at the San Antonio Breast Cancer Symposium in December. As reported in HemOnc Today, Dr. Yee says that current breast cancer treatments focus upon tumor cells which are actively dividing because "we have an inability to eradicate - or kill - dormant non-dividing tumor cells," which results in the need for physicians and their patients to be continually vigilant for a recurrence of the cancers when they're in remission. However, Dr. Yee says that he has "a lot of hope" that immunotherapies, particularly those utilizing checkpoint inhibitors, can eliminate dormant cancer cells if appropriately tumor cell antigens can be found. "One of the things we have to work hard on is how do we get the immune system, when it's unshackled from checkpoint inhibition by PD-L1 inhibitors, to identify dormant estrogen receptor-positive breast cancer cells. We have developed many monoclonal antibodies over the years that have recognized estrogen receptor-positive breast cancer cells that could serve as neoantigens for an immune attack," says Dr. Yee.

Immunotherapy Holds Potential to Eliminate Dormant Lethal Cancer Cells

01/27/17 - Visible Heart Lab Adds Virtual Realty System to its Capabilities

The IEM-affiliated Visible Heart Laboratory has recently unveiled a new virtual reality system that allows users to explore the insides of 3D heart models. Inspired by the desire to expand upon traditional classroom learning, this system gamifies conventional anatomical modeling to provide students and researchers with a unique, virtual tour of numerous aspects of various heart models, including different tissues, chambers, and even implantable medical devices. Though only several months old, this system has already attracted students, physicians, and industry members alike to experience this novel technology.

The team behind the system, led by graduate student Erik Gaasedelen, hopes to begin to introduce sound, motion, and real-world situations, like catheter insertion, into the model, allowing for more user interaction with the system. The Visible Heart Lab's Principal Investigator, Dr. Paul A. Iaizzo, Professor of Surgery and IEM Associate Director for Education and Outreach, stated that many groups of clinicians and researchers from around the world have come to see the system and have remarked about its potential for training fellows and medical residents. "There is a huge opportunity for the use of this system/approach beyond its current educational function," Dr. Iaizzo notes. "This system will allow physicians to train and practice procedures before entering the operating room or cathlab."

Visible Heart Lab Virtual Reality System

Read more archived news items>